Welcome!

Today's Exercises

Code: 5322 5551

comet-toolkit.org/userguide/training/lps

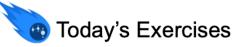
WiFi Details

SSID: LPS2025

Password: planet2025

Pieter De Vis

Sam Hunt



Maddie Stedman Astrid Zimmermann

Code: 5322 5551

comet-toolkit.org/userguide/training/lps

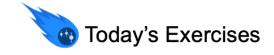
Today's Agenda

- 1. Presentation: Met Toolkit Introduction
 - What is CoMet?
 - ☐ Uncertainty 101
 - ☐ Tools Intro
- 2. Exercises
 - punpy basics with in-situ type data
 - bsarray basics with EO type data
- 3. "Real-life" Examples

The CoMet Toolkit — Uncertainties made easy

Pieter De Vis, Sam Hunt, Astrid Zimmermann, Maddie Stedman National Physical Laboratory

LPS hands-on tutorial - 22/06/2025



Presentation Outline

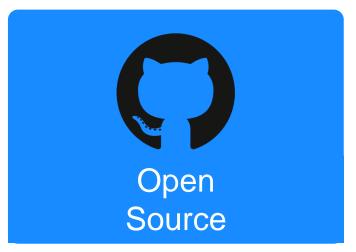
1. CoMet Toolkit Introduction

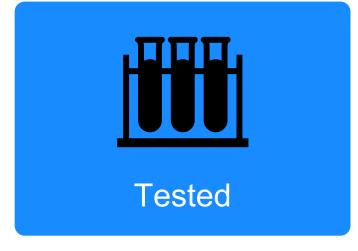
- Motivation & Overview
- Uncertainties 101
- CoMet Packages
 - punpy
 - obsarray
- Application examples


comet-toolkit.org/userquide/training/lps

Measurements in Society

- Critical for e.g. health, manufacturing, and environmental monitoring.
- ☐ Growing in **size** and **complexity**.
- □ Reliable interpretation requires uncertainty and error-covariance information, often overlooked or non-standardised.
- ☐ Error correlation important to get uncertainties right when combining data




Met Toolkit

Met Toolkit

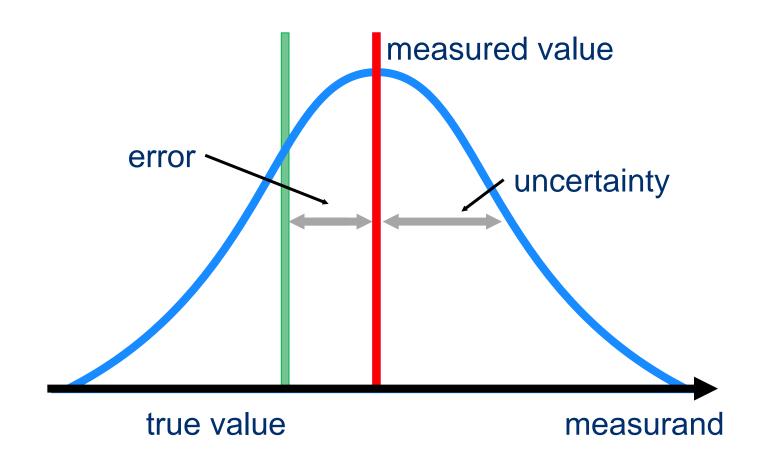
Propagation UNcertainties in Python

Handling uncertainty and errorcovariance in datasets

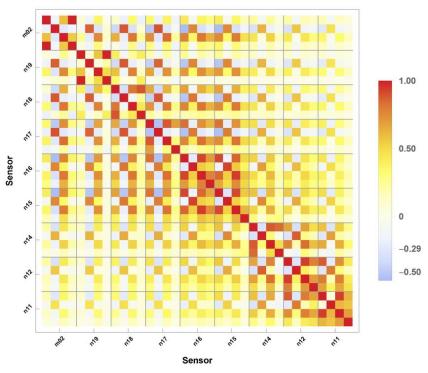
CoMet mathematical algorithms and interpolation tools

UNC Specification

Uncertainty metadata naming conventions



Uncertainties 101



Errors in a dataset are **not always independent**— e.g., when errors in pixels, bands instruments, or time steps are systematically related.

Why does it Matter?

- □ Bias uncertainties persist averaging doesn't help!
- ■Band ratios might off affecting retrieval uncertainty
- ☐ Misleading confidence in trends

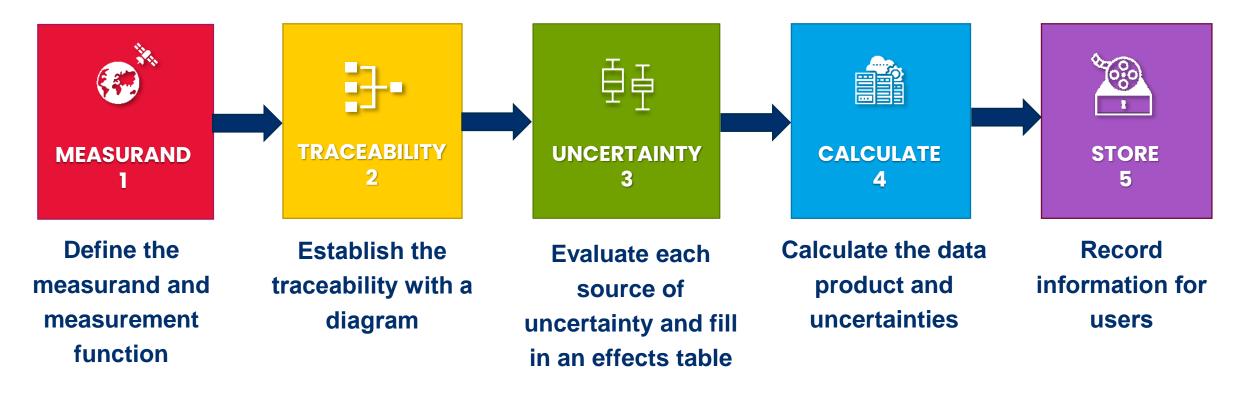
Error correlation matrix from Giering et al. 2019

What is Error Covariance?

Combines error correlation and uncertainty

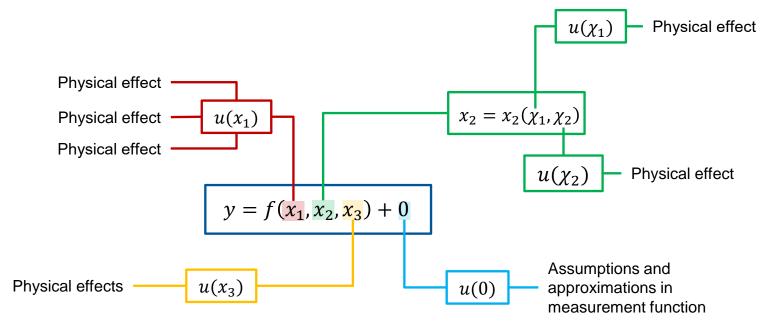
$$S = U R U^T$$

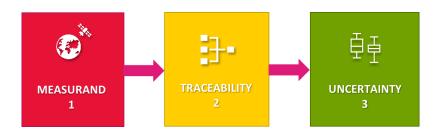
- ☐ It is the errors that are correlated, not the uncertainty values
- □ Random means completely uncorrelated, i.e. error correlation is identity matrix
- □ Systematic means fully correlated, i.e. error correlation filled with 1's

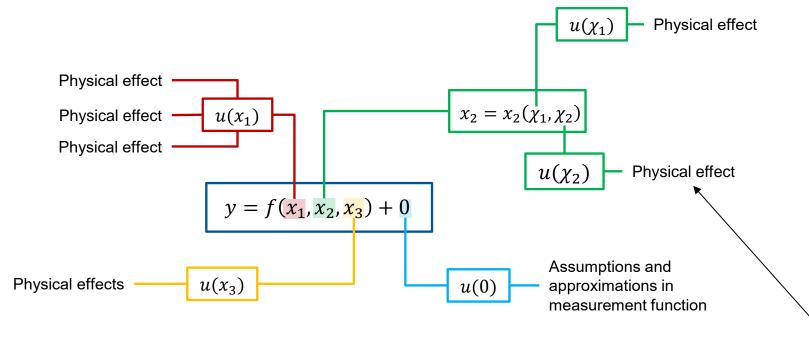


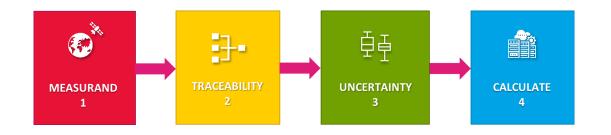
A Metrological Approach

Uncertainties are evaluated and expressed following *QA4EO Five Steps*, a framework which employs the principles of metrology.

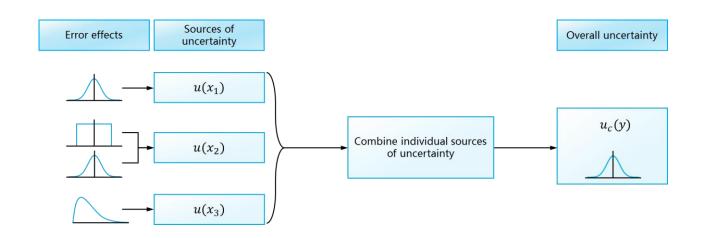

$$y = f(x_1, x_2, x_3) + 0$$

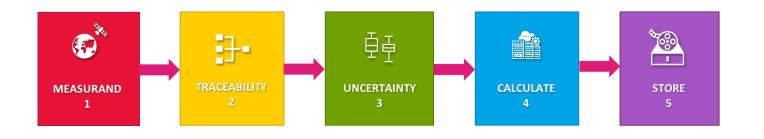






		Comments
Name of effect		A unique name
Affected term in measurement function		Name and standard symbol
Instruments in the series affected		List names
Correlation type and form	Pixel-to-pixel [pixels]	From a set of defined correlation forms
	from scanline to scanline [scanlines]	
	between images [images]	
	Between orbits [orbit]	
	Over time [time]	
Correlation scale	Pixel-to-pixel [pixels]	As needed to define type
	from scanline to scanline [scanlines]	
	between images [images]	
	Between orbits [orbit]	
	Over time [time]	
Channels/band s	List of channels / bands affected	Channel names
	Error correlation coefficient matrix	A matrix
Uncertainty	PDF shape	Functional form
	units	Units
	magnitude	
Sensitivity coefficient		Value, equation or parameterisation of sensitivity of measurand to term



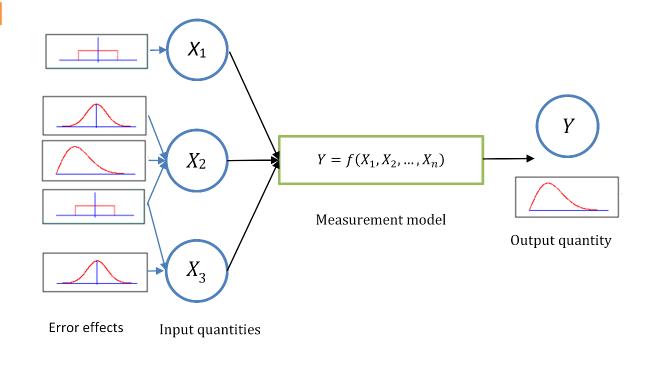


punpy

		Comments
Name of effect		A unique name
Affected term in measurement function		Name and standard symbol
Instruments in the series affected		List names
Correlation type and form	Pixel-to-pixel [pixels]	From a set of defined correlation forms
	from scanline to scanline [scanlines]	
	between images [images]	
	Between orbits [orbit] Over time [time]	
Correlation scale	Pixel-to-pixel [pixels]	As needed to define type
	from scanline to scanline	
	[scanlines]	
	between images [images]	
	Between orbits [orbit]	
	Over time [time]	
Channels/band s	List of channels / bands affected	Channel names
	Error correlation coefficient matrix	A matrix
Uncertainty	PDF shape	Functional form
	units	Units
	magnitude	
Sensitivity coefficient		Value, equation or parameterisation of sensitivity of measurand to term


```
double u_str_temperature(x=2, y=2, time=3);
  :_FillValue = 9.969209968386869E36; // double
  :err_corr_1_dim = "x";
  :err_corr_1_form = "custom";
  :err_corr_1_units = ; // double
  :err_corr_1_params = "err_corr_str_temperature_x";
  :err_corr_2_dim = "y";
  :err_corr_2_form = "systematic";
  :err_corr_2_units = ; // double
  :err_corr_3_dim = "time";
  :err_corr_3_form = "systematic";
  :err_corr_3_units = ; // double
  :err_corr_3_params = ; // double
  :err_corr_3_params = ; // double
  :err_corr_3_params = ; // double
  :pdf_shape = "gaussian";
```


Met Packages:



Propagating Uncertainties with

- ☐ Python module for propagating random, systematic and structured uncertainties through any Python measurement function
- ☐ Flexible in terms of the specified correlations along given dimensions or between input quantities
- Monte Carlo and Law of Propagation of uncertainties methods available

Punpy as a Standalone Tool

- ☐ Simple user interface:
 - Import punpy
 - 2. Define measurement function
 - 3. Create MC or LPU object
 - 4. Propagate uncertainties

- Measurement function are defined as python functions that take arrays as input quantities and return an array as measurand
- Many optional keywords for flexible functionality
 - return_corr
 - Corr_between
 - Repeat_dims

- Parallel_cores
- Output_vars
- ...

Punpy with digital effects tables punpy

- □ punpy interfaces with obsarray to make uncertainty propagation as efficient and easy to use as possible
- □ propagate_ds() function returns an obsarray dataset with combined random, systematic and structured uncertainties on measurand

```
from punpy import MeasurementFunction

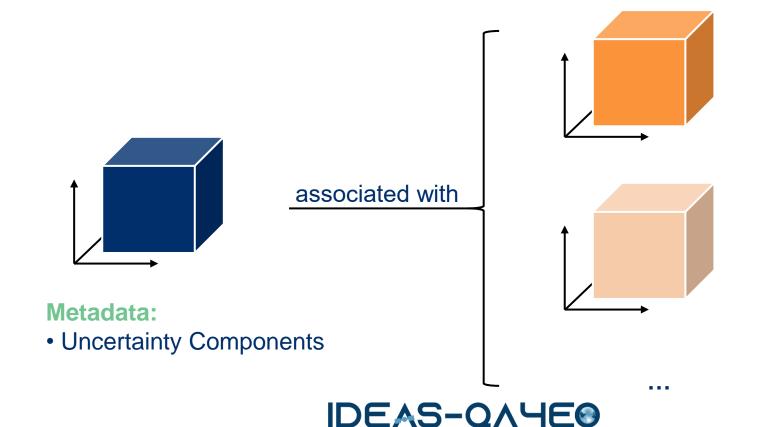
# Define your measurement function inside a subclass of MeasurementFunction
class IdealGasLaw(MeasurementFunction):
    def meas_function(self, pres, temp, n):
        return (n *temp * 8.134)/pres

# create object of the measurement function class and specify the variable names
gl = IdealGasLaw(["pressure", "temperature", "n_moles"], "volume", yunit="m^3")

# propagate uncertainties on the input quantities in ds to measurand in ds_y
ds_y = gl.propagate_ds(ds)
```


Met Packages:

obsarray



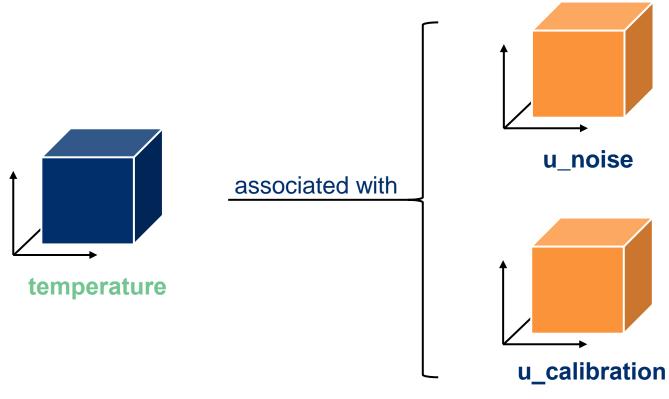
Uncertainty Variable Metadata

Observation Variables

Uncertainty Variables

Metadata:

- PDF Shape (gaussian, ...)
- Units (abs. or rel.)
- Error-Correlation...



Example – Temperature Dataset

Observation Variables

Uncertainty Variables

Metadata:

- PDF Shape "gaussian"
- Units %
- Error-Correlation:
 - All dims Random

Metadata:

- PDF Shape "rectangular"
- Units "K"
- Error-Correlation:
 - x, y systematic
 - **time** defined by matrix

Example – Temperature Dataset

```
variables:
  float temperature(time, lat, lon);
    temperature:unc_comps=["u_calibration", "u_noise"];
    temperature:units="K"
  float u calibration(time, lat, lon);
    u calibration:units="K";
    u_calibration:pdf_shape="rectangular";
    u_calibration:err_corr_dim1_name=["lat", "lon"];
    u_calibration:err_corr_dim1_form="systematic";
    u calibration:err corr dim2 name="time";
    u_calibration:err_corr_dim2_form="err_corr_matrix";
    u_calibration:err_corr_dim2_params=["err_corr_calibration_time"];
  float u noise(time, lat, lon);
    u_calibration:err_corr_dim1_name=["time", "lat", "lon"];
    u calibration:err corr dim1 form="random";
  float err corr calibration time(time, time);
```


Measurement data handling in Python

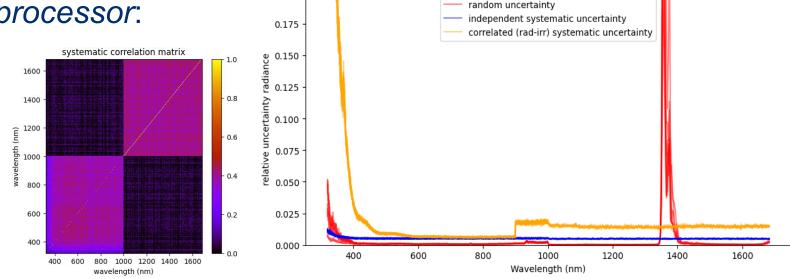
- □ obsarray is an extension to <u>xarray</u> to support defining, storing and interfacing with measurement data using the UNC specification.
- ☐ Also has functionality for defining flags following CF Conventions.
- ☐ It is designed to work well with <u>netCDF</u> files and for the <u>Earth Observation</u> community.

Plugs straight into punpy for propagation through measurement functions!

Met Application Examples

punpy

comet_maths



CoMet Toolkit in Action

- ☐ Validated against **NIST** uncertainty engine:
 - https://colab.research.google.com/github/comet-toolkit/comet_training/blob/main/NIST_example.ipynb
- □ CoMet is used in various other projects, such as QA4EO, HYPERNETS, CHIME
 L2, FLEX validation, TRUTHS science studies, LIME, FRM4SOC, RPV4PICS
- □ **Example** from *hypernets_processor*:

Hypernets is an automated network of in-situ instruments measuring reflectance for L2 satellite validation

- □ V1.0 of Comet toolkit has been released as **open source** toolkit:
 - www.comet-toolkit.org
 - github.com/comet-toolkit

- ☐ Accompanied by training material (**Jupyter** notebooks hosted on google colab):
 - www.comet-toolkit.org/examples
- Documentation & ATBD for individual tools:
 - obsarray.readthedocs.io/en/latest/
 - punpy.readthedocs.io/en/latest/
 - comet-maths.readthedocs.io/en/latest/

- ☐ Current release will be presented De Vis & Hunt (in prep)
- ☐ Looking to continue to expand the use cases the developed tools
 - Aiming to enable uncertainty propagation through any python measurement function
 - Please get in touch if you are interested!
- ☐ This has been our first step into this way of working, many more ideas in a roadmap to building up a comprehensive set of tools
 - e.g. retrieval tool/optimisation, BRDF tool, Look-up tables for faster processing, etc.

- ☐ The CoMet toolkit is an open-source software project to develop Python tools for the handling of error-covariance information in the analysis of measurement data
- ☐ This toolkit is based on **robust metrology**, and makes dealing with complexities of uncertainties much easier
- ☐ Includes obsarray, punpy & comet_maths as initial offering, to be extended
- ☐ These tools are already being used operationally in various projects (e.g. Hypernets)

- ☐ Please go to www.comet-toolkit.org/user-guide/training/
- **Mentimeter**

Code: 5322 5551

